11 research outputs found

    Evaluation of nucleosome forming potentials (NFPs) of forensically important STRs

    Get PDF
    Degraded forensic samples have proved difficult to analyze and interpret. New analysis techniques are constantly being discovered and improved but researchers have overlooked the structural properties that could prevent or slow the process of degradation. In theory, DNA that are bound to histones as nucleosomes are less prone to degradation, because nucleosomes prevent DNA from being exposed to degradative enzymes. In this study we determined the probability of 60 forensic DNA markers to be bound to histones based on their base sequence composition. Two web-based tools - NXSensor and nuScore - were used to analyze four hundred base pairs surrounding each DNA marker for properties that inhibit or promote the binding of DNA to histones. Our results showed that the majority of markers analyzed were likely to be bound as nucleosomes. Selection of the markers that are more protected to form a multiplex could increase the chance of obtaining a better balanced, easier to interpret DNA profile from degraded sample

    Heptaplex-direct PCR assay for simultaneous detection of foodborne pathogens

    Get PDF
    ÂĐ 2017 Elsevier. This manuscript version is made available under the CC-BY-NC-ND 4.0 license: http://creativecommons.org/licenses/by-nc-nd/4.0/ This author accepted manuscript is made available following 12 month embargo from date of publication (Sept 2017) in accordance with the publisher’s archiving policyFoodborne pathogens pose significant problems for public health and economy. The gold standard, cultivation, is time-consuming and costly. In this study, a heptaplex-direct PCR assay for simultaneous detection of seven foodborne pathogens without DNA extraction and enrichment was developed and validated. Seven virulent genes of target strains were amplified and found that the assay provided the expected PCR fragment of 583, 490, 415, 343, 224, 209, and 105 bp for Shigella spp., Shiga toxin-producing Escherichia coli (STEC), Streptococcus pyogenes, Campylobacter jejuni, Salmonella Typhi, Listeria monocytogenes, and Staphylococcus aureus, respectively. Validation study showed that the assay was highly reproducible, specific and sensitive (106–100 CFU/ml of detection limit). Moreover, assay application on 22 artificially-contaminated and 100 food samples provided a statistically equivalent efficiency to the culture method. A heptaplex-direct PCR assay thus can be used in microbial forensic science

    Degradation, quantification and the theory of nucleosome protection

    No full text
    Partial DNA profiles are often obtained from degraded samples due to allelic and locus dropout, particularly at the high molecular weight loci. Increasing the chance of genotyping success via shortening of amplicon size has been previously demonstrated with mini-STRs. A viable alternative based on nucleosome protection influenced by base sequences was explored in this study. Different systems for accurate quantification of degraded samples were looked at, including both single- and multi-copy targets. Optimisation was successful for GAPDH and it was compared to PlexorÂŪ HY using casework samples. Although GAPDH was more accurate, PlexorÂŪ HY was chosen and used to quantify degraded saliva samples due to its higher sensitivity and informativeness. The saliva samples had been degraded via the incubation method, which was assumed to preserve the chromatin structure. Next-generation and mini-STR kits were assessed in terms of sensitivity and casework genotyping. All kits performed exceptionally well and were comparable in all categories. 60 sequences (58 STRs and amelogenin X and Y) were evaluated for their nucleosome-forming potential (NFP) using two computer programs. The markers were divided into three groups based on their NFPs and the findings were verified empirically by amplifying degraded saliva samples and casework samples using 14 randomly chosen primer sets from the three groups. The effect of nucleosome protection was not observed for degraded saliva and casework samples. This is the first study that looks at an inherent property of STRs as a determinant of survivability from degradation processes. The work can be expanded to include more sample types. Other computer programs can be used, as predicting nucleosome positions is a rapidly advancing field.Partial DNA profiles are often obtained from degraded samples due to allelic and locus dropout, particularly at the high molecular weight loci. Increasing the chance of genotyping success via shortening of amplicon size has been previously demonstrated with mini-STRs. A viable alternative based on nucleosome protection influenced by base sequences was explored in this study. Different systems for accurate quantification of degraded samples were looked at, including both single- and multi-copy targets. Optimisation was successful for GAPDH and it was compared to PlexorÂŪ HY using casework samples. Although GAPDH was more accurate, PlexorÂŪ HY was chosen and used to quantify degraded saliva samples due to its higher sensitivity and informativeness. The saliva samples had been degraded via the incubation method, which was assumed to preserve the chromatin structure. Next-generation and mini-STR kits were assessed in terms of sensitivity and casework genotyping. All kits performed exceptionally well and were comparable in all categories. 60 sequences (58 STRs and amelogenin X and Y) were evaluated for their nucleosome-forming potential (NFP) using two computer programs. The markers were divided into three groups based on their NFPs and the findings were verified empirically by amplifying degraded saliva samples and casework samples using 14 randomly chosen primer sets from the three groups. The effect of nucleosome protection was not observed for degraded saliva and casework samples. This is the first study that looks at an inherent property of STRs as a determinant of survivability from degradation processes. The work can be expanded to include more sample types. Other computer programs can be used, as predicting nucleosome positions is a rapidly advancing field

    Using the Taguchi method for rapid quantitative PCR optimization with SYBR Green I

    No full text
    Here, we applied the Taguchi method, an engineering optimization process, to successfully determine the optimal conditions for three SYBR Green I-based quantitative PCR assays. This method balanced the effects of all factors and their associated levels by using an orthogonal array rather than a factorial array. Instead of running 27 experiments with the conventional factorial method, the Taguchi method achieved the same optimal conditions using only nine experiments, saving valuable resources

    āļĢāļēāļĒāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ‰āļšāļąāļšāļŠāļĄāļšāļđāļĢāļ“āđŒāđ‚āļ„āļĢāļ‡āļāļēāļĢāļāļēāļĢāļ•āļĢāļ§āļˆāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļˆāļēāļāļ‹āļ­āļ‡āļāļĢāļ°āļŠāļļāļ™ āļāļĢāļ°āļŠāļļāļ™ āđāļĨāļ°āļ›āļĨāļ­āļāļāļĢāļ°āļŠāļļāļ™ āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒ

    No full text
    Cartridges, bullets, and casings (CBCs) are commonly encountered in shooting incidences and could provide valuable DNA information from touch DNA that has been left during bullet handling and gun loading; however, conventional DNA analysis has yielded very poor results. Direct PCR, in which the DNA extraction and quantification steps are bypassed, has been shown to provide comparable and sometimes improved results from touch DNA and trace DNA samples. Here, we aimed to apply direct PCR with bullet casings (from three ammunition types and guns) and evaluate whether it should be recommended as a standard operating protocol for forensic DNA analysts. Three experiments were carried out to investigate the following: the effect of firing on DNA deposited on bullet casings; the effect of gun and ammunition types on STR profile quality; and the feasibility of using direct PCR with actual cases via typing of mock casework samples. DNA extraction resulted in a loss of about 40% of DNA originally deposited, and firing a bullet decreased the amount of DNA recovered by 27%. We recovered means (and 95% credible intervals) of 11.1 (7.9 to 13.9), 5.6 (3.0 to 7.7), 2.3 (0.2 to 4.0) alleles from touch DNA on fired bullet casings using the direct PCR protocol, conventional extraction protocol, and dilution protocol, respectively. No statistical difference in alleles recovered was observed between different fired ammunition types from three guns (9mm, 7.62 mm, and 5.56 mm from Glock Model 19, AK47, and Tavor T-21, respectively). As expected, mixed DNA profiles were observed in 40% of mock casework samples in which guns are shared between volunteers, which can complicate profile interpretation. This study showed that direct PCR from bullet casings improved STR profiles. As the direct PCR protocol is quicker, cheaper, and resulted in more alleles recovered, forensic DNA analysts may benefit from using direct PCR.āļāļĢāļ°āļŠāļļāļ™āļ›āļ·āļ™āđāļĨāļ°āļ›āļĨāļ­āļāļāļĢāļ°āļŠāļļāļ™āļ›āļ·āļ™āļ–āļđāļāļžāļšāđ„āļ”āđ‰āļšāđˆāļ­āļĒāđƒāļ™āļ—āļĩāđˆāđ€āļāļīāļ”āđ€āļŦāļ•āļļāļ‚āļ­āļ‡āļ„āļ”āļĩāļ„āļ§āļēāļĄāļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āļ›āļ·āļ™ āļ‹āļķāđˆāļ‡āļ­āļēāļˆāļˆāļ°āđ€āļ›āđ‡āļ™ āđāļŦāļĨāđˆāļ‡āļ‚āļ­āļ‡āļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļ—āļĩāđˆāđ€āļāļīāļ”āļˆāļēāļāļāļēāļĢāļŠāļąāļĄāļœāļąāļŠāļĢāļ°āļŦāļ§āđˆāļēāļ‡āļāļēāļĢāļšāļĢāļĢāļˆāļļāļāļĢāļ°āļŠāļļāļ™āļĨāļ‡āļ‹āļ­āļ‡āļāļĢāļ°āļŠāļļāļ™āļŦāļĢāļ·āļ­āļāļēāļĢāđƒāļŠāđˆāļĨāļđāļāļāļĢāļ°āļŠāļļāļ™ āļ­āļĒāđˆāļēāļ‡āđ„āļĢāļāđ‡āļ•āļēāļĄ āļāļēāļĢāļ•āļĢāļ§āļˆāļžāļīāļŠāļđāļˆāļ™āđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļˆāļēāļāļŦāļĨāļąāļāļāļēāļ™āļ”āļąāļ‡āļāļĨāđˆāļēāļ§āļ”āđ‰āļ§āļĒāļ§āļīāļ˜āļĩāļĄāļēāļ•āļĢāļāļēāļ™āļ™āļąāđ‰āļ™āđƒāļŦāđ‰āļĢāļđāļ›āđāļšāļšāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩ āđ€āļ­āđ‡āļ™āđ€āļ­ (STR profile) āļ—āļĩāđˆāđ„āļĄāđˆāļŠāļĄāļšāļđāļĢāļ“āđŒāļŦāļĢāļ·āļ­āđ„āļĄāđˆāļŠāļēāļĄāļēāļĢāļ–āļ™āļģāđ„āļ›āđƒāļŠāđ‰āļāļēāļĢāđƒāļ™āļŠāļąāđ‰āļ™āļĻāļēāļĨāđ„āļ”āđ‰ āļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒ (Direct PCR) āļŦāļĢāļ·āļ­āļāļēāļĢāļˆāļąāļ”āļ—āļģāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļˆāļēāļāļ§āļąāļ•āļ–āļļāļžāļĒāļēāļ™āđ‚āļ”āļĒāļ•āļĢāļ‡āđ‚āļ”āļĒāđ„āļĄāđˆāļœāđˆāļēāļ™āļāļēāļĢāļŠāļāļąāļ”āļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđ„āļ”āđ‰āļ–āļđāļ āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļŠāļēāļĄāļēāļĢāļ–āđ€āļžāļīāđˆāļĄāļ„āļ§āļēāļĄāļŠāļĄāļšāļđāļĢāļ“āđŒāļ‚āļ­āļ‡āļĢāļđāļ›āđāļšāļšāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļˆāļēāļāļ§āļąāļ•āļ–āļļāļžāļĒāļēāļ™āļ—āļĩāđˆāļĄāļĩāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļˆāļēāļ āļāļēāļĢāļŠāļąāļĄāļœāļąāļŠ āđ‚āļ”āļĒāļĄāļĩāļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāđ€āļžāļĩāļĒāļ‡āđāļ„āđˆāļŠāļ­āļ‡āļ‡āļēāļ™āļāđˆāļ­āļ™āļŦāļ™āđ‰āļēāļ—āļĩāđˆāļ™āļģāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒāļĄāļēāđƒāļŠāđ‰āđ€āļžāļ·āđˆāļ­āđ€āļžāļīāđˆāļĄāļ›āļĢāļīāļĄāļēāļ“ āļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļˆāļēāļāļāļĢāļ°āļŠāļļāļ™āļ›āļ·āļ™āđāļĨāļ°āļ›āļĨāļ­āļāļāļĢāļ°āļŠāļļāļ™āļ›āļ·āļ™ āđāļĨāļ°āļ—āļąāđ‰āļ‡āļŠāļ­āļ‡āļ‡āļēāļ™āļĒāļąāļ‡āļĄāļĩāļ‚āļ­āļšāđ€āļ‚āļ•āļāļēāļĢāļ§āļīāļˆāļąāļĒāļ—āļĩāđˆāļˆāļģāļāļąāļ” āļ”āļąāļ‡āļ™āļąāđ‰āļ™ āđƒāļ™ āļ‡āļēāļ™āļ§āļīāļˆāļąāļĒāļ™āļĩāđ‰āļ—āļēāļ‡āļœāļđāđ‰āļ§āļīāļˆāļąāļĒāļˆāļķāļ‡āļ™āļģāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒāļĄāļēāđƒāļŠāđ‰āđƒāļ™āļāļēāļĢāđ€āļžāļīāđˆāļĄāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāđāļĨāļ°āļ„āļ§āļēāļĄāļŠāļģāđ€āļĢāđ‡āļˆāđƒāļ™ āļāļēāļĢāļˆāļąāļ”āļ—āļģāļĢāļđāļ›āđāļšāļšāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­ āļœāļĨāļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļē āļāļēāļĢāļŠāļāļąāļ”āļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļ•āđˆāļģ āđāļĨāļ°āļ—āļģāđƒāļŦāđ‰āđ€āļāļīāļ”āļāļēāļĢāļŠāļđāļāđ€āļŠāļĩāļĒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđ„āļ›āļĄāļēāļāļ–āļķāļ‡āļĢāđ‰āļ­āļĒāļĨāļ° 40 āļ‚āļ­āļ‡āļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļ•āļąāđ‰āļ‡āļ•āđ‰āļ™ āđƒāļ™āļ‚āļ“āļ°āļ—āļĩāđˆāļāļĢāļ°āļšāļ§āļ™āļāļēāļĢāļĒāļīāļ‡āļ›āļ·āļ™ āļ—āļģāđƒāļŦāđ‰āļŠāļđāļāđ€āļŠāļĩāļĒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđ„āļ›āļ­āļĩāļāļĢāđ‰āļ­āļĒāļĨāļ° 27 āđ€āļĄāļ·āđˆāļ­āļ—āļģāļāļēāļĢāđ€āļ›āļĢāļĩāļĒāļšāđ€āļ—āļĩāļĒāļšāļāļēāļĢāļˆāļąāļ”āļ—āļģāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđāļšāļš āļĄāļēāļ•āļĢāļāļēāļ™ āļāļēāļĢāļˆāļąāļ”āļ—āļģāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđāļšāļšāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒ āđāļĨāļ°āļāļēāļĢāļˆāļąāļ”āļ—āļģāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđāļšāļšāđ„āļ”āļĨāļđāļŠāļąāđˆāļ™ āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒ āļˆāļēāļāļ›āļĨāļ­āļāļāļĢāļ°āļŠāļļāļ™āļ›āļ·āļ™ 9 āļĄāļĄ. āļ—āļĩāđˆāļœāđˆāļēāļ™āļāļēāļĢāļĒāļīāļ‡āđāļĨāđ‰āļ§ āļžāļšāļ§āđˆāļēāļāļēāļĢāļˆāļąāļ”āļ—āļģāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđāļšāļšāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩ āļ­āļēāļĢāđŒāļŠāļēāļĄāļēāļĢāļ–āđƒāļŦāđ‰āļˆāļģāļ™āļ§āļ™āļ­āļąāļĨāļĨāļĩāļĨāļ—āļĩāđˆāļŠāļđāļ‡āļ—āļĩāđˆāļŠāļļāļ”āđ€āļĄāļ·āđˆāļ­āđ€āļ—āļĩāļĒāļšāļāļąāļšāļ­āļĩāļāļŠāļ­āļ‡āļ§āļīāļ˜āļĩ āđ‚āļ”āļĒāļĄāļĩāļ„āđˆāļēāđ€āļ‰āļĨāļĩāđˆāļĒāđāļĨāļ°āļŠāđˆāļ§āļ‡āđ€āļŠāļ·āđˆāļ­āļ–āļ·āļ­ (Credible interval) āļ­āļĒāļđāđˆāļ—āļĩāđˆ 11.1 (7.9–13.9) āļŠāļģāļŦāļĢāļąāļšāļ§āļīāļ˜āļĩāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒ 5.6 (3.0–7.7) āļŠāļģāļŦāļĢāļąāļšāļ§āļīāļ˜āļĩāļĄāļēāļ•āļĢāļāļēāļ™ āđāļĨāļ° 2.3 (0.2–4.0) āļŠāļģāļŦāļĢāļąāļšāļ§āļīāļ˜āļĩāđ„āļ”āļĨāļđāļŠāļąāđˆāļ™āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒ āļāļēāļĢāļˆāļąāļ”āļ—āļģāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āđāļšāļšāđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒāļˆāļēāļāļ›āļĨāļ­āļāļāļĢāļ°āļŠāļļāļ™āļ›āļ·āļ™ āļ—āļĩāđˆāļœāđˆāļēāļ™āļāļēāļĢāļĒāļīāļ‡āđāļĨāđ‰āļ§āļŠāļēāļĄāļŠāļ™āļīāļ” (9 āļĄāļĄ. 7.62 āļĄāļĄ. āđāļĨāļ° 5.5 āļĄāļĄ.) āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļˆāļģāļ™āļ§āļ™āļ­āļąāļĨāļĨāļĩāļĨāļ—āļĩāđˆāđ„āļ”āđ‰āļĢāļąāļšāļˆāļēāļ āļāļĢāļ°āļŠāļļāļ™āđāļĨāļ°āļ›āļ·āļ™āļ—āļąāđ‰āļ‡āļŠāļēāļĄāļŠāļ™āļīāļ”āđ„āļĄāđˆāđāļ•āļāļ•āđˆāļēāļ‡āļāļąāļ™āļ­āļĒāđˆāļēāļ‡āļĄāļĩāļ™āļąāļĒāļŠāļģāļ„āļąāļāļ—āļēāļ‡āļŠāļ–āļīāļ•āļī āļ™āļ­āļāļˆāļēāļāļ™āļĩāđ‰ āļāļēāļĢāļ—āļ”āļĨāļ­āļ‡āļāļēāļĢāļˆāļģāļĨāļ­āļ‡āđ€āļŦāļ•āļļāļāļēāļĢāļ“āđŒāļˆāļĢāļīāļ‡āļ—āļĩāđˆāļĄāļĩāļāļēāļĢāđƒāļŠāđ‰āļ›āļ·āļ™āļĢāđˆāļ§āļĄāļāļąāļ™āđāļŠāļ”āļ‡āđƒāļŦāđ‰āđ€āļŦāđ‡āļ™āļ§āđˆāļēāļĄāļĩāļĢāļđāļ›āđāļšāļšāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļœāļŠāļĄāļ–āļķāļ‡āļĢāđ‰āļ­āļĒāļĨāļ° 40 āļ‚āļ­āļ‡āļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡ āļ”āļąāļ‡āļ™āļąāđ‰āļ™āļāļēāļĢāđāļ›āļĨāļœāļĨāļˆāļēāļāļ„āļ”āļĩāļ„āļ§āļēāļĄāļˆāļĢāļīāļ‡āļˆāļķāļ‡āļĄāļĩāļ™āđˆāļēāļˆāļ°āļ„āļ§āļēāļĄāļĒāļļāđˆāļ‡āļĒāļēāļāđāļĨāļ°āļ‹āļąāļšāļ‹āđ‰āļ­āļ™ āļ‹āļķāđˆāļ‡āļ™āđˆāļēāļˆāļ°āļ•āđ‰āļ­āļ‡āļĄāļĩāļāļēāļĢāļ™āļģ āļĢāļ°āļšāļšāļāļēāļĢāđāļ›āļĨāļœāļĨāļ—āļĩāđˆāđƒāļŠāđ‰āđ‚āļĄāđ€āļ”āļĨāļāļēāļĢāļ„āļģāļ™āļ§āļ“āļ„āđˆāļēāļ„āļ§āļēāļĄāļ™āđˆāļēāļˆāļ°āđ€āļ›āđ‡āļ™ (Expert interpretation system using continuous model) āļĄāļēāđƒāļŠāđ‰ āđ‚āļ”āļĒāļŠāļĢāļļāļ› āļāļēāļĢāļ™āļģāđ€āļ—āļ„āļ™āļīāļ„āđ„āļ”āđ€āļĢāđ‡āļ„āļžāļĩāļ‹āļĩāļ­āļēāļĢāđŒāļĄāļēāđƒāļŠāđ‰āđ€āļžāļ·āđˆāļ­āļˆāļąāļ”āļ—āļģāļĨāļēāļĒāļžāļīāļĄāļžāđŒāļ”āļĩāđ€āļ­āđ‡āļ™āđ€āļ­āļˆāļēāļāļ›āļĨāļ­āļāļāļĢāļ°āļŠāļļāļ™āļ›āļĢāļ°āļŠāļšāļ„āļ§āļēāļĄāļŠāļģāđ€āļĢāđ‡āļˆ āļĄāļĩāļ›āļĢāļ°āļŠāļīāļ—āļ˜āļīāļ āļēāļžāļŠāļđāļ‡ āļĢāļ§āļ”āđ€āļĢāđ‡āļ§ āđāļĨāļ°āļ›āļĢāļ°āļŦāļĒāļąāļ”āļ„āđˆāļēāđƒāļŠāđ‰āļˆāđˆāļēāļĒ āđ€āļŦāļĄāļēāļ°āļāļąāļšāļāļēāļĢāļ™āļģāđ„āļ›āđƒāļŠāđ‰āļāļąāļšāļ•āļąāļ§āļ­āļĒāđˆāļēāļ‡āļ›āļĨāļ­āļāļāļĢāļ°āļŠāļļāļ™āļˆāļēāļāļ„āļ”āļĩāļ„āļ§āļēāļĄāļˆāļĢāļīāļ‡āļ•āđˆāļ­āđ„

    Tiger hair morphology and its variations for wildlife forensic investigation

    No full text
    Tiger population has dramatically decreased due to illegal consumption and commercialisation of their body parts. Frequently, hair samples are the only evidence found in the crime scene. Thus, they play an important role in species identification for wildlife forensic investigation. In this study, we provide the first in-depth report on a variety of qualitative and quantitative characteristics of tiger guard hairs (24 hairs per individual from four individuals). The proposed method could reduce subjectivity of expert opinions on species identification based on hair morphology. Variations in 23 hair morphological characteristics were quantified at three levels: hair section, body region, and intra-species. The results indicate statistically significant variations in most morphological characteristics in all levels. Intra-species variations of four variables, namely hair length, hair index, scale separation and scale pattern, were low. Therefore, identification of tiger hairs using these multiple features in combination with other characteristics with high inter-species variations (e.g. medulla type) should bring about objective and accurate tiger hair identification. The method used should serve as a guideline and be further applied to other species to establish a wildlife hair morphology database. Statistical models could then be constructed to distinguish species and provide evidential values in terms of likelihood ratios
    corecore